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A definition of  the Feynm an  path  integral which does not  rest on  a limiting 
procedure  based on  time-slicing has been given by DeWit t -More t te .  
We present in this paper  a discussion of  real Gauss ian  measures  and 
formulate  expressions for  the q u a n t u m  statistical part i t ion funct ion 
directly in terms of  measures  of  integrat ion on the topological vector 
space ~0 of  cont inuous  funct ions defined on the time interval T = 
(t~, tb), such that x(t~, tb) = 0 for  all x ~ if0. We give a definition of  a 
measure  for  the space ~bo equivalent to the path integral based on the 
Uhlenbeck-Orns te in  probabil i ty distribution. We give expressions for  the 
parti t ion funct ion using the Wi ene r -Feynma n  measure  and the Uhlenbeck-  
Ornstein measure .  As an exercise in the use of  the new techniques, we 
present calculations of  momen t s  of  potential  functions. The techniques 
will enable one to solve in a r igorous  manne r  practical p roblems  in 
quan tum  statistical mechanics.  
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1. I N T R O D U C T I O N  

A definition of Feynman's  path integral which does not rest on a limiting 
procedure, based on time-slicing, has been given recently by DeWitt. (1'2~ 
This new development has provided the missing rigor to the path-integral 
formalism of quantum mechanics and quantum statistical mechanics. In the 
literature various measures for function space integration have been proposed. 
The two important  measures are the Wiener-Feynman ~a~ and the Uhlenbeck-  
Ornstein (~,5~ measure. The importance of the Uhlenbeck-Ornstein measure 
is in the path-integral formulation of quantum statistics, where it has been 
shown (~ that it results in a great improvement in the approximate evaluation 
of the partition function with decreasing temperature and/or decreasing 
relative magnitude of the anharmonic part  of the potential. 

The formalism proposed by DeWitt in Refs. 1 and 2 is valid for complex 
Gaussian measures and in that form is particularly suited for the study of 
problems in particle physics and especially for the study of gauge fields. We 
present extensions of  DeWitt 's  results to real Gaussian measures 2 and 
formulate expressions for the partition function in terms of measures of  
integration on the topological vector space r of  continuous functions 
defined on the time interval T -= (t~, t~) such that X(ta)  = x ( tb )  = 0 for all 
x~r We state in Section 2 an immediate extension of propositions stated 
and proved in Refs. 1 and 2 for evaluating integrals over the function space 
r which we shall need for the approximate calculations of  the partition 
function. In Section 3 we given an expression for the partition function 
using the Wiener-Feynman measure on the space Cxx, which is the space of 
continuous paths x on T such that x ( t~ )  = x( t~)  = x .  We calculate in that 
section moments of the potential function using the propositions stated in 
Section 2. In Section 4 we give a definition of measure for the space r 
equivalent to the path integral based on Uhlenbeck-Ornstein probability 
distributions and give an expression for the partition function using this 
measure on the space Cx,~. An an exercise in the use of the new techniques, 
we present calculations of moments of potentials. The examples covered in 
Sections 3 and 4 should familiarize the reader with the use of new, versatile 
techniques. 

It  may be emphasized that the final results obtained are not new and 
the spirit of  this paper is no more than to present rigorous calculations of  
results contained in Refs. 3-5. The last section of this paper gives conclusions 
and directions in which further investigations may be pursued. 

2 We refer to as a measure on topological vector space what is called a promeasure in 
Refs. 1 and 2. 
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2. N O T A T I O N S  A N D  P R O P O S I T I O N S  3 

We consider a space r o f  cont inuous path x o f  uniform norm defined 
on a time interval T = (ta, tb) such that 

x ( t o )  = x ( t b )  = o 

]lx(t)]] = suplx(t)[ for t e T  

In the function space integral formulat ion o f  the quantum partition 
function one encounters integrals o f  a functional q~(x) on r which may be 
written symbolically 

o = do (x) O) 
0 

where ~ is the real Gaussian measure whose Fourier  t ransform Fw is 

g~o(/~) = exp [ -  �89 W(/~)] (2) 

W(/~) is a quadratic form on M, the dual o f  r defined by 

= f +(r) fT +(s) G(r, s) (3) 

M is the space o f  bounded  measure/~ on T such that  

(l~, x> = fT  x ( t )  dl~(t) (4) 

and in particular for the Dirac measure 8o and the Lebesgue measure fl 

<as, x> -- (5) 

(A,  x )  = f T x ( t )  d t  (6) 

In this paper we shall restrict ourselves to two measures on the space 
q~o: the Wiener -Feynman  and the Uhlenbeck-Ornstein measures. The 
covariance G(r,  s )  for the Wiener -Feynman  measure is 

G(r,  s )  = Y - ( r  - s ) ( r  - ta)(tb - s) / ( to  - t~) 
+ Y + ( r  - s ) ( s  - t .)(tb - r) /( tb - ta) (7) 

and that  for Uhlenbeck-Ornste in  measure is ~ 

G(r,  s) = [2Y-( r  - s) sinh(r - t~) sinh(tb -- s) 
+ 2 Y + ( r  - s ) s i n h ( s  - ta)sinh(tb -- r )] / s inh( tb  -- t~) (8) 

3 The  d iscuss ion  o f  this  sect ion is entirely based  on the  resul ts  o f  Refs.  1 and  2. Fo r  the  
p r o o f  o f  the  va r ious  p ropos i t i ons  s ta ted in this sect ion the  reader  is referred to these  
papers .  

4 y +  a n d  Y -  are  the  Heavis ide  s tep-up  and  s t ep -down  func t ions  on  T, respectively.  
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We shall need in the fol lowing a quadra t i c  form on M defined as 

W(t~, ~j) = ~T +~(r) f~ +~(s) G(r, s) (9) 

We next s tate the fol lowing definit ion and  p ropos i t ions  for the case of  
real  Gauss ian  measures ,  which are  s imilar  to the cor respond ing  results  and  
p ropos i t ions  given in Refs. 1 and  2. 

Definition. Let  ~ be the measure  on the vector  space r which is the 
space of  con t inuous  funct ions  x on the t ime interval  T = (ta, 6] such tha t  
the funct ions  are fixed only at  one end,  say 

X(ta) = 0 

r is a subspace o f  r We  define a no rmal i za t ion  cons tan t  N 

1 =re dwxx(x)=N-l f ,  dN(x) (10) 
x x  x x  

and  the mean t ra jec tory  )?(t) 

2(t) - <<at, x))oxx = N -1 ( x(t) d~(x) (11) 
x x  

The integrals  in Eqs. (10) and  (11) can be pe r fo rmed  using the mapp ing  

Pn: r - ~  IRn given by x --> x~ = <3~, x>, t~ = to <tl <t2 < ..- <t~ = to. W e  have 

fr d~(x) = f~ 3(xn- x)P(x, lx~_l)P(x,_dx~_2 ) 

x ... P(xllx) I-I dx~ (12) 

F o r  the W i e n e r - F e y n m a n  measure  

1 (xk+l - xk) 2 (13) 
PwF(Xk+IIXk) = [27 r ( t~+ l -  tk)] zj2 exp 2(t~+1 -- tk) 

and  for the Uh lenbeck -Orns t e in  measure  

1 
P~jo(Xk +1 [x~) = [27r{1 - e x p [ -  2(t~ + 1 - t~)l}l 1~ 

{x~+l - x~ e x p [ - ( t k + l  - tk)]} 2 
x exp - 2{1 - e x p [ - 2 ( t k + l  - t~)]} (14) 
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Proposition 1. 

- (2=) "/2 (det )1/~ , dul ... du~ ~(u~) ... qa,(u,) 

( X e x p \ -  ~ ~.J=l 

(/,~, x)  = u~, i = 1,2, -.., n, (15) 

Wis the matrix whose 0"element is W(/,~,/~j), which has been defined in Eq. (9). 

Proposition 2. This is an obvious extension of Proposition 1 : 

<Vl(<l tL1,  X - -  .)~))(p2(</-/,2, .3C - -  X , ) )  . ' .  (?pt~(<ll, n ,  X - -  X ) ) ) O x x  

= @~((t*~, x))~~ x)) ..-~o=((ix~, x))>Oo (16) 

]Proposition 3. 

R 2 
_ =(n-~)/2 F(u) e x p ( - ~ ) d u  (17) 

[c 2 det a] z/2 j~ 
% o 

c2= 2 biai71bY (18) 
i , ] = l  

The results given in this section are necessary and sufficient for the 
calculations of Sections 3 and 4. 

3, PARTITION FUNCTION IN THE W I E N E R - F E Y N M A N  
MEASURE 

We consider a particle of mass unity in a potential V(x). The partition 
function for this system is given by the following expression: 

z = f ~  Ddyexp[-ffdt<<V(x(t))>>~] 

x ~ e x p [ - f f d t { V ( x ( t ) ) - < ( V ( x ( t ) ) ) ) ~ } ] ~  ~u (19) 

fi =- l/kT 
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The exponential in the second term in the integrand of Eq. (19) can be 
expanded in a series and then one can take ( ( ) ) y  of the terms of the ex- 
pansion. The motivation to write the representation (19) for the partition 
function is the observation of Feynman <a) that one can save effort and 
increase accuracy in the calculation by expanding the potential in the 
integrand about the mean position given by 

y = fi-1 x(t) dt (22) 

It is therefore clear that we need moments of the type 

((V(x(a)) ... V(x(M))...  V(x(p))))~ 
We outline the method of calculation of such moments and in particular 

give in the following the details of the calculation of the moment of order 
two. We therefore calculate 

((exp[-iyx(cr) - i~x(p)]))~ for ~ > p 

From Eq. (20) we have 

((exp[-iyx(a) - i[x(p)]))v 

x(t) dt - y) exp[ -  iyx(a) - iCx(p)]) r < .  f; = D -1 dx -1 
- -  o o  

(23) 

Using expressions (10), (11), and (13), we obtain 

N = 1/(2~rfi) 1/2, ~7(t) = x (24) 

We use the integral representation for the delta function 

8(~ f f  x ( t ) d t - y ) =  12~r J- ~o(+~~ e ~ky exp[-/k/~jo(e x(t)dt] dk (25) 

Using Proposition 2, we have 

( e x p [ -  ik(~x(t)dt]exp[-iyx(a)]exp[-i~x(P)])r Jo 

x <epl((/*l, x))~o2(</.2, x))~Oa((/*a, x>)>| o (26) 

where/.1 --> A,/*2 --> 8~ --> 8D; </.1, x) = ul,  </.2, x )  = u2, <t*3, x) = ua; 
and 

~q((/*l, x)) = exp[-- (ik/fl)ul] 
~%((/*2, x)) = exp(--iTu2) 
q~a((/*a, x)) = exp( -  i~ua) (27) 
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We calculate the integral on the right-hand side of Eq. (26) using 
Propositions 1 and 3. The matrix W can be calculated using the expression 
for covariance given in Eq. (7) and taking/~ = A, /~2 -- 3o, and/~a = 8p. 
The matrix W is found to be 

[~'~-5 ~ ~r  - ~) �89 - p) \ 

w = [~(fl" - ~) 0//3)(/3 - ~) 0/5)(5 - ,~)) (2s) 
/ % 

\ � 8 9  - e )  ( p / f i ) ( f i  - ,~) ( p / f l ) ( f l  - P)  

For this case F of Eq. (17) is exp and 

b~ = - ik/fl, b2 = - i7, ba = - ir (29) 

From Eqs. (18) and (28), we have 

8 

c 2 =  ~ bi(2W~j)b, 
i , j = l  

= - 2 - ] 7 +  fi + fi 

+ k~p(fi-fi p) + 2y~p(/3 --fi  a) + ~2p(~fi_ p)] (30) 

We thus obtain 

and 

~ e x p [ -  ik(B x(t) dt] exp[-iyx(~)] Jo 

C 2 

= exp[- ix (k  + y + ~)] exp ~- 

A parallel calculation gives 

D = U = 1 / ( 2 ~ f l )  1/2 

( ( exp[ -  iyx(cr) - ir ]) )~ 

= exp[-iy(y + r exp - ~ -  + 2-4 

Y~ [ ~  + (~ - e)~ - 5(~ - P ) ] ) ~  +~ 

Defining the Fourier transform of the potential 

V(x(~)) = f +~ d7 {exp[-iTx(cr)]}V(7) 

(31) 

(32) 

(33) 
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and using Eq. (33), we get 

f~  da fo~ dO ((V(x(~r))V(x(p))))y 

fo = 2 da d~ V(7) V(~)((exp[-  iyx(a) - iCx(o)])), (34) 
oo oO 

The moment ((exp[-iyx(~)]))y can be obtained by putting ~ = 0 in 
Eq. (33). This gives 

( ( e x p [ -  iyx(~)]))~ = e x p [ -  iy 7 - (V2p/24)] (35) 

Calculation of  higher order moments presents no new difficulty. 

4. PARTIT ION F U N C T I O N  IN THE U H L E N B E C K - O R N S T E I N  
M E A S U R E  

The Uhlenbeck-Ornstein function integral representation of the parti- 
tion function arises from the Green's function of the dimensionless form of 
the Schr6dinger-Bloch partial differential equation s 

cqr ( c  q2 x 2 ) 
~--~ = 'r 2 4 U(x) ~b (36) 

where U(x) is the nonquadratic part of the potential V(x) in units of length 
and time, (4's) which reduce the one-dimensional Schr6dinger-Bloch equation 
to the form of Eq. (36). For a particle of mass unity, the end-point parameter 
/3 in the reduced units is 

1 [[c~2V'~ 11,~ 
/3 = ~ [\~-~x21,r ] (37) 

The expression for the partition function in the Uhlenbeck-Ornstein 
measure is the same as that given through Eqs. (19)-(21) except for the 
difference that the right-hand side of Eq. (19) is to be multiplied by a factor 
of exp(-/3/2) and V(x) is to be replaced by U(x). The integrals in the function 
space r and r are now performed with the real Gaussian measure of 
covariance G(r, s) given in Eq. (8). Using expressions (10)-(12) and (14), 
a straightforward calculation gives 

e s'2 ( x  2 ~) 
N = [4~r sinh/3]zl~ exp k - ~- tanh 

if(t) = x cosh(t - �89 (38) 
cosh(/3/2) 

s For simplicity in notation we take h = 1. 
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We next calculate ((exp[-i~,x(a) -i~x(p)}))~ for (7/> p. We retain the 
notation of Section 3. The expressions for N and if(t) given in Eq. (38) are 
now to be used in Eq. (26). The matrix W for the covariance G(r, s) given in 
Eq. (8) is found to be 

/ ( fl) 4sinh~(fl- o) . a 4sinh�89 p) ~ 
2 fl - 2 tanh - --~os-fi~fi- smh ~ ~os-h ~ sinh 

|4~ sinh�89 a) sinhO 2sinha . 2sinhp | /  - ~) ( 3 9 )  - ~ -  W = / 2 si-~--fi smh (/3 -- ~) sinh fl sinh (/3 

/ ~ 4  sinh ~.(fil--~ p) sinh O 2 sinh O 2 sinh p _ p) 
\ cosn zp ?. sinh/3 sinh (/3 - ~) sinh 13 sinh (/3 

3 
The expression for c 2 = ~.  b~(2W~flbj is constructed from the matrix 

i , j = l  
Wgiven in Eq. (39). The result corresponding to the expression of Eq. (31) is 

~ J o  x(t) exp[ -  ) , ~  

( [ ~  ~ y c o s h ( a -  �89 
= exp - ix  tanh + cosh)fi  

+ ~cosh(p- �89  c 2 
~/3 exp ~- (40) 

From Eqs. (38) and (21), one easily finds that for this case 

= - -  e B/2 exp - (41) 
O 4 sinh �89 7 

Substituting the expression of Eq. (40) into Eq. (23) and taking for D 
the right-hand side of Eq. (41), we get 

((exp[--i),x((0 -- i~x(p)]))v.(~>~p) 

= e x p  fi c o t h ~ -  1 (~,2 + ~2) +_~_ 

- i y@+~) -~ ,~@oth~c os h (a -p ) - s i nh (a -p ) } ]  (42) 

and 

1 ( (exp[ - i , x (a ) ] ) )~=exp[ -~(~co th~- l )~2- iy~]  (43) 

There is no loss of generality in having presented calculations of only 
second-order moments in this section and in Section 3. Extension of this 
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program to higher order calculations is straightforward and can be per- 
formed on similar lines. 

5. C O N C L U S I O N S  

This paper is the first in a series which is based on the definition of 
function space integrals without a limiting procedure for expressions of the 
partition function in quantum statistical mechanics. The techniques would 
enable one to solve in a rigorous manner practical problems in statistical 
physics and especially enable the study of transport  properties and correlation 
functions. One can choose at will measures on the topological vector space 
of functions which would give a better approximation to the study of thermo- 
dynamic properties in different temperature regions. This can be achieved 
by selecting appropriate covariances G(r, s). 
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